"

開戸|礼唫【135e.cn】bo123彩票网官网✅顶级正规遊戏平台✅业内最顶尖原生APP,一站体验所有遊戏,bo123彩票网官网✅7*24H在线服务✅值得您信赖|期待您加入我们!

<acronym id="ka6mi"></acronym>
<rt id="ka6mi"></rt>
<acronym id="ka6mi"><small id="ka6mi"></small></acronym>
<rt id="ka6mi"><optgroup id="ka6mi"></optgroup></rt>
<rt id="ka6mi"><center id="ka6mi"></center></rt><acronym id="ka6mi"></acronym>
<rt id="ka6mi"></rt>
"

數學科學學院學術報告:Generalized Hypothetical Syllogism in Fuzzy Logic

作者: 時間:2019-11-19 點擊數:

報告題目Generalized Hypothetical Syllogism in Fuzzy Logic

報告時間20191120(周三) 下午15:00

報告地點:老辦公樓214

報告專家Micha? Baczyński教授


摘要:

There are many reasoning schemas (rules of inferences) in classical logic, like modus (ponendo) ponens, modus (tollendo) tollens, scheme of disjunctive reasoning, law of contraposition, reduction to absurdity, hypothetical syllogism, etc. They are also used in approximate reasoning and/or fuzzy control. In many applications of fuzzy logic, choosing the right operation in a given inference rule is crucial. One of such rules is hypothetical syllogism. In fuzzy logic, generalized hypothetical syllogism can be expressed either as inequality (HS) from T-transitivity, or (GHS) involving Zadeh's compositional rule of inference (CRI). In our talk we consider both generalizations of hypothetical syllogism. In particular, we investigate fuzzy implications satisfying (GHS), which belong to well-known families of fuzzy implications, especially R-implications.


主講人簡介:

Micha? Baczyński,波蘭西里西亞大學教授bo123彩票网官网,主要從事聚合算子、模糊蘊涵bo123彩票网官网、近似推理與函數方程等領域的研究。IEEE計算智能協會(IEEE CIS)、歐洲模糊邏輯與技術學會(EUSFLAT)、國際模糊系統協會(IFSA)、波蘭數學學會(PTM)、波蘭人工智能協會(PSSI)會員,是國際學術期刊“International Journal of Approximate Reasoning”的區域編輯,也是國際權威期刊 “Fuzzy Sets and Systems”, “Advances in Fuzzy Systems”和“Journal of Nonlinear Sciences and Applications”的編委會成員。


歡迎參加!


Copyright 濟南大學數學科學學院. All rights reserved.

地址:濟南市市中區南辛莊西路336號濟南大學西校區第七教學樓   郵編:250022   電話(傳真):0531-82767313

bo123彩票网官网 <acronym id="ka6mi"></acronym>
<rt id="ka6mi"></rt>
<acronym id="ka6mi"><small id="ka6mi"></small></acronym>
<rt id="ka6mi"><optgroup id="ka6mi"></optgroup></rt>
<rt id="ka6mi"><center id="ka6mi"></center></rt><acronym id="ka6mi"></acronym>
<rt id="ka6mi"></rt>